If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+28x+6=0
a = 9; b = 28; c = +6;
Δ = b2-4ac
Δ = 282-4·9·6
Δ = 568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{568}=\sqrt{4*142}=\sqrt{4}*\sqrt{142}=2\sqrt{142}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-2\sqrt{142}}{2*9}=\frac{-28-2\sqrt{142}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+2\sqrt{142}}{2*9}=\frac{-28+2\sqrt{142}}{18} $
| 7x/5-1=x-7/5 | | 2y=+7=y | | 2z+10=-8 | | 0.5+4=2b+4 | | 3x=9 | | 0.02(10,000)-0.04y=0.06(y+10,000) | | X+7+x+1=56 | | 0.2(10,000)-0.04=0.06(y+10,000) | | 1/6=(r-6) | | -7/2y=5/4 | | (x)/(6)+(x)/(12)+(x)/(7)+5+(x)/(2)+4=x | | 10p-2(3p-6)=4(3p+3)-8p | | -7/2x=5/4 | | 2x(x+3)=3(x-3) | | 2(p-1)+(2p-1)=5(p-1)-3 | | 9(n+11)+2n=11n+99 | | x-4/3=2-x+4/8 | | 2w-5/4=6 | | 5x/7=x/2+3 | | 4^x+3)=51 | | 5(x-1)+3(2x-1)=11x+6 | | 2(3-h(-6=-5h | | 7x=7x-8 | | 2x^2+3=59 | | 9×-14=6x-2 | | 3x+33/7+×+27/6=11 | | 5(2x-1)-(3x-1)=14 | | 10^x=360 | | 21-x÷3=11 | | 400-10000=x | | 4x+8x+8=22+3x | | -5(m+1)-m-6=-6(m+3)+7 |